Application and optimization of the U-Net++ model for cerebral artery segmentation based on computed tomographic angiography images

Accurate segmentation of cerebral arteries on computed tomography angiography (CTA) images is essential for the diagnosis and management of cerebrovascular diseases, including ischemic stroke. This study implemented a deep learning-based U-Net++ model for cerebral artery segmentation in CTA images, focusing on optimizing pruning levels by analyzing the trade-off between segmentation performance and computational cost. Dual-energy CTA and direct subtraction CTA datasets were utilized to segment t…

Read the full article on ejradiology.com